Онтогенез

Развитие трофобласта

К началу третьей недели трофобласт имеет первичные ворсинки, которые состоят из цитотрофобластической сердцевины и покровного синцитиального слоя. При дальнейшем развитии клетки мезодермы проникают внутрь первичных ворсинок и растут в направлении децидуальной оболочки, образуя вторичные ворсинки.

В конце третьей недели мезодермальные клетки сердцевины вторичных ворсинок начинают дифференцироваться в клетки крови и мелкие кровеносные сосуды, формируя у ворсинке капиллярную систему и, следовательно, образуют третичные, или дефинитивного плацентарные ворсинки. Капилляры третичных ворсинок контактируют с капиллярами, которые развиваются в мезодерме хорионической пластинки и в соединительной ножке.

Эти сосуды, в свою очередь, вступают в контакт с внутреннезародышевой сосудистой системой, соединяя плаценту с эмбрионом. Итак, когда на четвертой неделе развития начинает функционировать сердце, система ворсинок является готовой к поставке эмбриона питательными веществами и кислородом. В это время клетки цитотрофобласта ворсинок прорастают через покровный слой синцития, достигают материнского эндометрия и вступают в контакт с подобными выростами соседних ворсин, образуя внешнюю цитотрофобластическую пластинку — раковину. Эта раковина постепенно окружает трофобласт и плотно фиксирует хорионический мешок к эндометрию. Ворсинки, которые простираются от хорионической пластинки к основной децидуальной оболочке (децидуальная пластинка — часть эндометрия, входящая в состав плаценты), называют стволовыми или якорными. Ворсинки, которые ответвляются от стволовых ворсин, называются свободными, или терминальными ворсинами. Через терминальные ворсины происходит обмен питательными веществами между матерью и плодом.

Полость хориона постепенно увеличивается, а к концу 19-20-х суток эмбрион остается соединенным с трофобластом только с помощью тонкой соединительной ножки, впоследствии превращается в пупочный канатик, который соединяет плаценту с эмбрионом.

Печень и костный мозг

Дефинитивные ЭГСК могут генерировать полный набор линий эритроидных, миелоидных, лимфоидных клеток и мегакариоцитов в печени плода, однако нейтрофилы будут отсутствовать до установления гемопоэза в костном мозге (КМ) . В отличие от макрофагов, моноциты и дендритные клетки (ДК) считаются ЭГСК-зависимыми популяциями. У мышей они прослеживаются вплоть до клоногенного предшественника в КМ, называемого предшественником ДК-макрофагов . В процессе человеческого эмбриогенеза первые признаки пролиферации ДК наблюдаются в печени плода уже примерно с 6 недели ВУР . Обычные ДК1, ДК2 и плазмоцитоидные ДК обнаруживаются в тканях плода — включая легкие, селезенку, кожу и тимус — на 12 недели ВУР и являются относительно многочисленными по сравнению с популяцией ДК во взрослых тканях . ДК плода, как и их аналоги во взрослом организме, способны мигрировать, реагировать на Toll-подобные рецепторы и стимулировать пролиферацию и активацию T-клеток . Фетальные ДК обладают особой способностью индуцировать дифференцировку регуляторных Т-лимфоцитов, стимулировать выработку Т-клеточного интерлейкина 4 и ингибировать выработку фактора некроза опухоли альфа (TNF-α) с помощью аргиназы II . Таким образом, ДК играют важную роль в поддержании толерантности во время ВУР. Популяция В-клеток впервые появляется в печени плода с 7 недели ВУР в виде предшественников В-лимфоцитов; зрелые же B-клетки присутствуют только после 9 недели ВУР .

Частично это можно объяснить изменением способности ЭГСК продуцировать B-клетки и соответствующего микроокружения печени, необходимого для их дифференцировки . В середине беременности КМ становится основным источником B-клеток, а зрелые B-клетки в изобилии обнаруживаются в селезенке . И хотя разнообразие эмбриональных В-лимфоцитов достигается еще на ранних стадиях , формирование герминативных центров подавляется до воздействия антигенов после рождения, что сопровождается активной соматической гипермутацией . Сравнение В-клеток кишечника, полученных от плодов второго триместра, с В-клетками младенцев при помощи масс-цитометрии, комбинированной с анализом репертуара рецепторов В-клеток, хорошо продемонстрировало, что кишечные В-клетки у плода — это, прежде всего, фолликулярные и переходные В-клетки, тогда как плазматические В-клетки в большей степени представлены у младенцев . Другим интересным аспектом дифференцировки В-клеток, который интенсивно изучался на мышиной модели, является поэтапное развитие клеток В-1, сходных с клетками врожденного иммунитета. Они преобладают в начале беременности, а затем появляются и обычные клетки В-2 . Однако окончательно идентичность человеческих B-1-подобных клеток еще не определена . Будущие исследования по созданию клеточного атласа КМ и селезенки плода человека позволят лучше понять онтологию B-клеток, подчеркнув специфические для тех или иных органов различия в нишевых факторах, которые поддерживают дифференцировку B-клеток.

СТРОЕНИЕ И РАЗВИТИЕ

Процесс, ведущий к формированию женской гаметы, или зрелого яйца, называют оогенезом. Его подразделяют на две фазы: генеративную и вегетативную. Генеративная фаза начинается с размножения первичных половых клеток – они обособляются на ранних стадиях эмбрионального развития и предназначены для образования гамет. Эти клетки дают начало оогониям, каждый из которых образует затем т.н. ооцит.

В вегетативной фазе ооцит вступает в период роста, характеризующийся увеличением массы его цитоплазмы. Затем он накапливает желток и претерпевает особое клеточное деление – мейоз. Мейоз завершается образованием зрелого яйца.

У млекопитающих вегетативная фаза инициируется фолликулостимулирующим гормоном, вырабатываемым гипофизом. У насекомых оогенез стимулируется ювенильным гормоном, который вырабатывается прилежащими телами – парными железами, расположенными в голове.

Во время генеративной фазы и в ранний период вегетативной фазы будущее яйцо мало отличается от клетки любого другого типа, т.е. у него нет тех специфических признаков, которые характерны для яйца. На этой стадии молодой ооцит окружен мембраной, называемой оолеммой. Его ядро погружено в цитоплазму, содержащую специализированные структуры – органеллы. У многих организмов оогенез протекает при участии фолликулярных клеток и трофоцитов.

Классификация бластоцит

Столбец 5, 6 — день переноса и/или криоконсервации (день 5 и 6).

При классификации бластоцист в обозначении указывают цифру от 1 до 6 (степень развития эмбриона):

  1. полость бластоцисты меньше, чем половина целого эмбриона
  2. полость бластоцисты больше, чем половина целого эмбриона
  3. полная бластоциста, полость заполняет почти весь эмбрион
  4. развитая бластоциста, полость включает весь эмбрион, тонкая оболочка
  5. бластоциста пробивается из оболочки
  6. бластоциста без оболочки

Буквенное обозначение

Качество внутриклеточной массы, из которой будет развиваться зародыш:

  • A — много клеток, плотно упакованные
  • B — несколько клеток, свободно сгруппированные
  • C — очень немного клеток

Качество трофэктодермы (TE), которая обеспечит прикрепление эмбриона к эндометрию и разовьется в плаценту

  • A — много клеток, образуют единый слой
  • B — мало клеток, образуют свободный эпителий
  • C — очень мало крупных клеток

Оплодотворение

Жизнь человека начинается с момента слияния в организме матери двух половых клеток — яйцеклетки и сперматозоида, при этом образуется одна новая клетка, то есть новый организм. В каж­дой из женских и мужских половых клеток имеются по 23 пары хромосом, 22 из которых передают плоду наследственные признаки отца и матери.

В этих обеих половых клетках насчитывается около 100 тыс. генов, которые определяют структурные и функциональ­ные особенности вновь образованного организма.

Половая принадлежность будущего ребенка зависит от 23-й пары хромосом женской и мужской половых клеток. 23-я пара хромосом женской половой клетки обозначается как икс-икс (XX), а 23-я пара хромосом мужской половой клетки — икс-игрек (XY).

Если с женской клеткой сливается икс (X) хромосома мужской клетки, то рождается девочка, а когда с женской клеткой сливается игрек (Y) хромосома мужской клетки, — мальчик.

Таким образом, пол будущего ребенка зависит от половой клетки отца, но не от его воли или желания.

Женская и мужская половые клетки, сливаясь в маточной тру­бе, образуют одну клетку, то есть новый организм, у которого имеется 46 пар хромосом. Как только образовалась такая клетка, она в течение одной недели начинает размножаться путем деления, одновременно постепенно продвигаясь.

Третья неделя развития зародыша

Период образования трехслойного щитка. Клетки наружного, эктодермального, листка зародышевого щитка смещаются к заднему его концу, в результате чего образуется валик, вытянутый в направлении оси зародыша. Этот клеточный тяж получил название первичной полоски. В головной (передней) части первичной полоски клетки растут и размножаются быстрее, в результате чего образуется небольшое возвышение — первичный узелок (узелок Гензена). Первичная полоска определяет двустороннюю симметрию тела зародыша, т.е. его правую и левую стороны. Место первичного узелка указывает на краниальный (головной) конец тела зародыша.

В результате быстрого роста первичной полоски и первичного узелка, клетки которых прорастают в стороны между эктодермой и энтодермой, образуется средний зародышевой листок — мезодерма. Клетки мезодермы, расположенные между листками щитка, называются внутризародышевой мезодермой, а выселившиеся за его пределы — внезародышевой мезодермой.

Часть клеток мезодермы в пределах первичного узелка особенно активно растет вперед, образуя головной (хордальный) отросток. Этот отросток проникает между наружным и внутренним листками от головного до хвостового конца зародыша и образует клеточный тяж — спинную струну (хорду). Головная (краниальная) часть зародыша растет быстрее, чем хвостовая (каудальная), которая вместе с областью первичного бугорка как бы отступает назад. В конце 3-й недели кпереди от первичного бугорка в наружном зародышевом листке выделяется продольная полоска активно растущих клеток — нервная пластинка. Эта пластинка вскоре прогибается, образуя продольную борозду — нервную бороздку. По мере углубления бороздки ее края утолщаются, сближаются и срастаются друг с другом, замыкая нервную бороздку в нервную трубку. В дальнейшем из нервной трубки развивается вся нервная система. Эктодерма смыкается над образовавшейся нервной трубкой и теряет с ней связь.

В этот же период из задней части внутреннего (энтодермального) листка зародышевого щитка во внезародышевую мезенхиму (в так называемую амниотическую ножку) проникает пальцевидный вырост — аллантоис, который у человека определенных функций не выполняет. По ходу аллантоиса от зародыша через амниотическую ножку к ворсинкам хориона прорастают кровеносные пупочные (плацентарные) сосуды. Содержащий кровеносные сосуды тяж, соединяющий зародыш с внезародышевыми оболочками (плацентой), образует брюшной стебелек. Таким образом, к концу 3-й недели зародыш человека имеет вид трехслойного щитка. В области наружного зародышевого листка видна нервная трубка, а глубже — спинная струна, т.е. появляются осевые органы зародыша человека.

ОПЛОДОТВОРЕНИЕ

Оплодотворение – многоступенчатый процесс. Он начинается со взаимодействия и последующего слияния яйца и сперматозоида, а завершается объединением двух наборов хромосом – одного от материнского, а другого от отцовского организма. При этом объединении не только восстанавливается диплоидное число хромосом, но и создаются новые генетические комбинации. Рыбы и многие земноводные выделяют сперматозоиды и яйца (икру) в воду, так что оплодотворение у них наружное, т.е. происходит вне тела животного; то же свойственно и многим морским беспозвоночным. У наземных беспозвоночных, а также у остальных позвоночных оплодотворение внутреннее, т.е. слияние сперматозоида с яйцом происходит в репродуктивной системе самки.

Остается неизвестным, каким образом сперматозоиды данного вида вступают в контакт с яйцами своего, а не какого-то другого вида даже в тех случаях, когда самец выделяет сперму в обширные водные пространства. Как полагают некоторые исследователи, яйцо выделяет специфичное для данного вида вещество, привлекающее соответствующие сперматозоиды благодаря их способности к хемотаксису – движению по градиенту концентрации распознаваемого химического вещества. Некоторые сперматозоиды активно ищут яйцо, продвигаясь к нему с помощью длинного жгутика. У ряда беспозвоночных сперматозоиды перемещаются подобно амебам.

У многих животных сперматозоид проникает в яйцо в любой точке на его поверхности, но у насекомых и рыб – только через специальное отверстие (микропиле). По-видимому, сперматозоиды, способные проникнуть в яйцо в любом месте, делают это, размягчив участок яйцевых оболочек с помощью ферментов, содержащихся в их акросоме. В результате непосредственного контакта сперматозоида и яйца их оболочки сливаются, образуя одну непрерывную оболочку, объединяющую эти две клетки.

На этой стадии процесса оплодотворения у очень многих животных происходит изменение поверхностного слоя яйца за счет того, что кортикальные гранулы, содержащиеся в цитоплазме яйца, быстро выделяют свое содержимое под яйцевую оболочку; выделенные вещества оводняются, увеличивая занимаемый объем, что приводит к отделению оболочки от цитоплазмы: между ними появляется т.н. перивителлиновое пространство, и, кроме того, изменяются свойства яйцевой оболочки. В итоге вокруг оплодотворенного яйца возникает благоприятная среда и создается препятствие для проникновения дополнительных сперматозоидов. Однако активность кортикальных гранул – не единственный фактор, ответственный за то, что у большинства животных в яйцо может проникнуть лишь один сперматозоид.

После того как сперматозоид попал в яйцо, оболочка его ядра распадается, а высвободившийся хроматин (вещество, из которого состоят хромосомы) оказывается в цитоплазме яйца и с этих пор находится под ее контролем.

Дальнейшие события могут протекать по-разному. Например, у морского ежа Arbacia
ядерная оболочка сперматозоида распадается сразу же после его проникновения в яйцо, и вслед за этим происходит дисперсия компактной массы хроматина. Затем хроматин вновь отделяется от цитоплазмы яйца в результате восстановления ядерной оболочки.

У некоторых животных ядра сперматозоида и яйца, оказавшись в общей цитоплазме, немедленно вступают в контакт; их оболочки сливаются, и образуется единое диплоидное ядро в единой клетке – зиготе.

У других животных, например у кролика, ядра сперматозоида и яйца сближаются, после чего обе ядерные оболочки разрушаются. Затем два гаплоидных набора хромосом выстраиваются в одну линию, так что зигота может начать делиться; диплоидное число хромосом в ней восстановилось.

После оплодотворения, наружного или внутреннего, начинается процесс дробления зиготы и развитие зародыша.

Стадии онтогенеза

Если рассматривать с точки зрения биологии, то самым значимым событием во всем индивидуальном развитии является способность к размножению. Именно это качество обеспечивает существование видов в природе.

Исходя из способности размножаться, весь онтогенез можно разделить на несколько периодов.

  1. Дорепродуктивный.
  2. Репродуктивный.
  3. Пострепродуктивный.

В течение первого периода происходит реализация наследственной информации, которая проявляется в структурных и функциональных преобразованиях организма. На этом этапе особь достаточно чувствительна ко всем воздействиям.

Репродуктивный период реализует самое важное предназначение каждого организма – продолжение рода. Последний этап неизбежен в индивидуальном развитии каждой особи, он проявляется старением и угасанием всех функций

Заканчивается всегда смертью организма

Последний этап неизбежен в индивидуальном развитии каждой особи, он проявляется старением и угасанием всех функций. Заканчивается всегда смертью организма.

Дорепродуктивный период еще можно разделить на несколько стадий:

  • эмбриональный период развития;
  • личиночный;
  • метаморфоз;
  • ювенильный.

Все периоды имеют свои особенности, которые проявляются в зависимости от принадлежности организма к определенному виду.

Эмбрион 11 недель

С 11 по 13 неделю малыш проходит серьезное медицинское обследование – ультразвуковой скрининг. Определяют толщину воротникового пространства, носовые кости, проводят исследование сосудов, исключают грубые изменения строения тела. Осматривают внутренние органы, строение лица, головной мозг, ручки и ножки, позвоночник. Голова всё слишком велика и не пропорциональная относительно тела, но размеры будут меняться: голова большая, тело маленькое, верхние конечности длинные, а нижние короткие и согнутые в коленях. Формируются зачатки ногтей и зубов.

По итогам обследования УЗИ маме проводится биохимический анализ крови на хромосомные аномалии и риск развития осложнений беременности.

На смену симптомам токсикоза приходят новые ощущения: изжога, вздутие живота, могут быть запоры. Женщина необходимо много времени и внимания уделять своему рациону питанию, а также режиму приема жидкости.

Факторы, влияющие на развитие эмбриона

На развитие эмбриона влияет множество факторов:

  • наследственные: они предопределяют развитие пороков, самопроизвольный аборт или мертворождение,
  • нарушение овариально-менструальной и детородной функции матери,
  • недоразвитие женщины общее и половое,
  • хроническая соматическая патология: сахарный диабет, диффузный зоб, некоторая патология печени и сердца,
  • инфекционные заболевания, перенесенные за время беременности: сифилис, краснуха, корь, туберкулёз,
  • вредные привычки матери: табакокурение, злоупотребление алкоголя или употребление наркотиков,
  • внешние влияния: ионизирующая радиация, кислородное голодание, неполноценное питание беременной.

На 6 неделе развития эмбриона особенно опасны для него внешние факторы и вредные привычки будущей мамы, так как они могут вызвать выкидыш.

Развитие эмбрионов при ЭКО

Различают следующие периоды развития эмбрионов при ЭКО (экстракорпоральном оплодотворении):

  • эмбриологический этап,
  • развитие эмбриона после ЭКО.

На эмбриологическом этапе производят оплодотворение яйцеклетки концентратом сперматозоидов спустя 4-6 час после чрезвагинальной пункции. Оплодотворённые яйцеклетки помещают на специальных средах в инкубатор. Там они будут развиваться до пятого дня. На пятый день эмбрион покидает яйцеклетку. Этот процесс называется хетчинг, он напоминает момент, когда птенцы вылупляются из яйца. На этом периоде развития эмбрион готов к подсадке. Дальше проводят подсадку эмбрионов.

Как же происходит процесс развития эмбрионов после ЭКО? Он происходит так же, как и при обычной беременности. Важен момент имплантации эмбриона. Врачи наблюдают за женщиной, берут необходимые анализы в день имплантации, через одну неделю и на четырнадцатый день после подсадки. Если эмбрионы прижились, то женщину наблюдают в обычном режиме.

Как проходит развитие эмбрионов после ЭКО по дням

Через 12 часов после оплодотворения наступает первая стадия развития эмбриона после ЭКО – зигота, у которой есть двойной набор хромосом. Через 24 часа клетки должны делиться. Их называют бластомерами. На третий день насчитывается от шести до восьми бластомеров. На этом этапе развития эмбрионов после ЭКО они могут прекратить развиваться и погибнуть, если обнаружится поломка генома.

На четвёртые сутки наступает стадия морулы, а к концу этого дня в моруле образуется полость, а бластомеры делятся на две группы, каждая из которых в последующем способна выполнять свою функцию. На пятые сутки развития эмбрионов после ЭКО наступает стадия бластоцисты. Именно на этой стадии эмбрион имплантируют в матку.

В результате оплодотворения в матке развивается новый организм. За время развития будущий малыш приобретает неповторимые, только ему свойственные черты. Нужно сделать всё необходимое, чтобы он вошёл в этот мир здоровым и счастливым.

Только хорошие ооциты подходят для оплодотворения

Эмбриолог следит за действием буквально по часам, т.к возможны разные аномальные варианты развития, которые в клинике обязательно отслеживают и культивируют отдельно. Через 16–18 часов после проведения оплодотворения в ооците появятся специфические округлые структуры — пронуклеусы. Это предшественники ядер, содержащие генетический набор как мамы, так и папы.

Ооциты (NF, 1PN) откладываются в отдельныю капли и за ними также наблюдают. Если из такого ооцита получается отличный эмбрион, то вопрос о его переносе или заморозки решается совместное с репродуктологом, эмбриологом и пациентом.

Дальнейшее развитие эмбриона, дробление, происходит в течение 6 дней.

  • 2PN — два пронуклеуса (нормальное оплодотворение). Именно такие эмбрионы культивируют дальше
  • NF – пронуклеусов нет. Оплодотворение либо наступило, но пронуклеусы слишком быстро исчезли, либо ооцит просто не оплодотворился

  • 1PN — один пронуклеус. В 25% случаев при 1PN эмбрион может быть диплоидным.

  • NS — ооцит не выжил после процедуры ИКСИ

  • 3PN и более — аномальный эмбрион. Перенос такого эмбриона запрещен, в клинике такие эмбрионы никогда не используют.

Эмбрион на 1 недели беременности

Зигота всё ещё находится в маточной трубе на пути в матку. Маточные трубы покрыты ворсинками, передвигающими яйцеклетку в место, где находится матка. Если зигота не успеет попасть и закрепиться в матке, то возникает риск внематочной беременности, что может значительно навредить здоровью матери.

Во время оплодотворения сперматозоид приносит свои 23 хромосомы, которые соединяются с 23 хромосомами в яйцеклетке. Причем в зависимости от того, будет ли сперматозоид содержать в себе Х или У хромосому, зависит пол будущего ребёнка.

Один из самых важных этапов развития эмбриона. В течение первой недели идет процесс преобразования оплодотворенной яйцеклетки в зародыш. На вторые сутки эмбриогенеза формируется геном будущего ребенка в результате объединения генетической информации родителей. Спустя несколько дней зародыш готов к имплантации в полость матки. Благоприятным периодом пересадки считается 5 день жизни эмбриона. Этот период сопровождается его делением до уровня бластоцисты и освобождением от внешней оболочки. В результате повышается шанс успешного прикрепления и внедрения плодного яйца. В случае развития беременности, он определяется как положительный.

РАЗНООБРАЗИЕ ЯИЦ

Яйца животных, принадлежащих к разным группам, крайне разнообразны по величине, форме и окраске; не меньшие различия наблюдаются и в количестве яиц, производимых разными видами. Так, зрелое яйцо морского ежа красного цвета, достигает 70–80 мкм в диаметре, и одна самка продуцирует миллионы яиц; самка комара откладывает от 100 до 200 яиц, а пресноводная японская рыбка оризия, или медака (Orysius latipes
), – всего 10–30. Величина и количество яиц мало зависят от размеров животного, а определяются в основном стратегией размножения.

Среди млекопитающих самые крупные яйца свойственны яйцекладущим – утконосу и ехидне. Диаметр яйца утконоса – 4,4 мм, ехидны – 3 мм. Зрелая яйцеклетка человека имеет примерно 100 мкм (0,1 мм) в диаметре, макака-резуса – 118 мкм, морской свинки – 76 мкм, кролика – 160 мкм, а мыши – 80 мкм.

Величину птичьих яиц обычно оценивают по их массе (что точнее). Самое маленькое яйцо – всего 0,5 г – у колибри Trochilus colubris
, а самое крупное яйцо в современном животном мире – у страуса Struthio camelus
: оно достигает 1400 г. Коренные жители Африки использовали скорлупу яиц страуса как сосуды для воды. Однако, по-видимому, самое большое яйцо принадлежало вымершей птице – эпиорнису (Aepyornis
), жившему на Мадагаскаре; его емкость превышала 9 л. Яйцо курицы породы леггорн имеет массу 58 г. По форме яйца бывают сферическими, эллипсоидными, коническими и продолговатыми.

Число яиц в кладке тоже варьирует. Например, пингвины откладывают по одному яйцу, голуби – по два, куропатки – до 20 яиц в кладку.

Яйца дрозда синевато-зеленые. У домашних кур яйца бывают белые, желтые или различных оттенков коричневого. Сообщалось о породе кур, откладывающих сине-зеленые яйца. Размеры, форма и окраска яиц иногда варьируют у разных представителей одного вида.

Влияние условий окружающей среды на внутриутробное развитие ребенка

Развитие организма человека представляет собой сложное сочетание таких процессов, как деление клеток, их перемещение и взаимодействие, образование тканей и органов. Любое нарушение этих процессов может вызвать пороки развития эмбриона или плода. Такие нарушения могут возникать под воздействием различных повреждающих факторов. К факторам риска развития врожденных пороков относятся: ионизирующее излучение, вирусные и бактериальные инфекции, патогенные микроорганизмы, гельминты, некоторые лекарственные препараты, алкоголь, курение, наркотики, недостаточное питание, профессиональные вредности, поздний материнский возраст, недостаточный медицинский контроль.

!  Это интересно

Ионизирующая радиация вызывает изменения в наследственном аппарате клеток и появление мутаций. Также опасность представляют вирусы и бактерии. Например, у женщин, перенесших вирусную краснуху в первом триместре беременности, часто рождаются дети с болезнями сердца, глухотой, катарактой (помутнение хрусталика глаза). Возбудитель сифилиса способен вызвать врожденную глухоту. Кроме того, у родителей, злоупотребляющих алкоголем, дети рождаются со специфическим комплексом уродств и пороков: задержкой в физическом и умственном развитии, различными черепно-мозговыми уродствами, пороками сердца, дефектами конечностей и др. На детородные функции человека влияет курение и злоупотребление наркотиками: у курящих женщин на треть увеличивается риск бесплодия, а у мужчин курение вызывает значительное снижение половой потенции. Главный вред табачный дым наносит зародышу. Большинство детей, рожденных курильщиками, появляются на свет с различными нарушениями — масса их тела меньше нормы, они отстают в психическом развитии, у них высок процент внезапной смерти. Большую опасность для развития плода представляют некоторые лекарственные препараты (барбитураты, тетрациклины, варфарин и др.).

Нарушения в развитии чаще вызывают те факторы, которые действуют в определенные критические периоды, когда эмбрион или плод максимально чувствительны к определенным воздействиям. У человека критическими периодами эмбрионального развития являются: оплодотворение; внедрение бластоцисты в стенку матки (7—8-й дни эмбриогенеза); развитие комплекса осевых органов и плаценты (3—8-я недели); развитие головного мозга (15—20-я недели); формирование основных систем организма, в том числе половой (20—24-я недели).

Вторая неделя развития зародыша

Это стадия, когда клетки эмбриобласта разделяются на два слоя (две пластинки), из которых образуется два пузырька. Из наружного слоя клеток, прилежащих к трофобласту, образуется эктобластический (амниотический) пузырек, заполненный амниотической жидкостью. Из внутреннего слоя клеток зародышевого узелка эмбриобласта формируется эндобластический (желточный) пузырек. Закладка («тело») зародыша находится там, где амниотический пузырек соприкасается с желточным. В этот период зародыш представляет собой двухслойный щиток, состоящий из двух зародышевых листков: наружного — эктодермы (от греч. ektos — вне, derma — кожа) и внутреннего — энтодермы (от греч. ёntos — внутри). Эктодерма обращена в сторону амниотического пузырька, а энтодерма прилежит к желточному пузырьку. На этой стадии можно определить поверхности зародыша. Дорсальная поверхность прилежит к амниотическому пузырьку, а вентральная — к желточному. Полость трофобласта вокруг амниотического и желточного пузырьков рыхло заполнена тяжами клеток внезародышевой мезенхимы. К концу 2-й недели длина зародыша составляет всего 1,5 мм. В этот период зародышевый щиток в своей задней (каудальной) части утолщается. Здесь в дальнейшем начинают развиваться осевые органы {хорда, нервная трубка).

Эмбриональное развитие

Зародышевое, или эмбриональное, развитие живого организма происходит либо в яйцевых оболочках вне организма матери, либо внутри него.

В ходе этого развития из яйцеклетки возникает многоклеточный организм, состоящий из различных органов и тканей, который способен к самостоятельному существованию. У всех животных зародышевое развитие включает оплодотворение яйца или, в случае партеногенеза, его активацию, за которым следуют стадии дробления, гаструляции, органогенеза с последующим выходом из яйцевых оболочек или рождением.

Оплодотворение происходит либо в организме матери, либо в водной среде. За оплодотворением следует дробление яйца, в ходе которого оно последовательно и многократно делится на бластомеры — сперва крупные, а затем всё более и более мелкие клетки. В итоге возникает многоклеточный организм — бластула. Цепь делений дробления создаёт предпосылки для возникновения дифференцировки, то есть различий между частями зародыша. Первичную дифференцировку обусловливает неодинаковый состав цитоплазмы клеток, возникших из разных участков яйца. Способность эмбриональных клеток к передвижениям также важна для формирования органов взрослого организма.

На стадии гаструляции обособляются зародышевые листки, и в результате возникает трёхслойная структура — эктодерма (внешний слой), энтодерма (внутренний слой), мезодерма (промежуточный слой).

Хотя на ранних стадиях развития эмбриональные клетки могут развиваться в различных направлениях, под действием ряда факторов они постепенно детерминируются (приобретают способность развиваться в лишь одном определённом направлении).

На стадии органогенеза, который обеспечивается, главным образом, разнообразными клеточными перемещениями и дифференцировкой самих клеток, происходит разделение зародышевых листков на зачатки органов и систем, в ходе которого крупные зачатки дифференцируются на более мелкие, и в результате создаётся всё более и более сложная структура целого организма. Например, из той части эктодермы, которая образует зачаток нервной системы, выделяется головной мозг. Из последнего обособляются зачатки глаз, в которых выделяется сетчатка, а в ней дифференцируются специализированные зрительные клетки —палочки и колбочки.

Зародышевое развитие различных групп животных проходит неодинаково: у зародышей рыб образуется большой желточный мешок, птицам свойственны желточный мешок и особые органы — аллантоис и амнион, а млекопитающим, кроме того, ещё трофобласт и плацента.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector